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QSAR
in grossly
underdetermined
systems:
Opportunities
and issues

Regression in grossly underdetermined
systems has emerged as an important means
for understanding molecular activity via
comparative molecular field analysis (CoMFA)
and other quantitative structure activity
relationship (QSAR) studies. But this
methodology has applications in much
broader areas; for example, near-infrared
spectroscopy, mutational enzyme activity
studies including protein folding rates to
determine which sites are important for
determining conformation, and analyses of
gene expression data from chip arrays. An
error analysis which answers questions
concerning the quality of the predictivity, the
relative importance of each descriptor, the
quality of the estimates of the contribution
by each descriptor, and the number of
independent components expressed by
the associated data is indispensable in
understanding whether some particular set of
structure variables is important in defining the
mechanisms driving the chemical or biological
activities. This paper reviews opportunities for

QSAR studies. It also considers the analytical
aspects of error analysis in least-squares
regression, and contrasts principal component
regression (PCR) and partial least-squares
(PLS) procedures with cross-validation on the
issues of error analysis (e.g., the quality of the
contribution estimates for each structure
descriptor). Further, a methodology for
selecting optimal subsets of components
in PCR is presented.

1. Introduction
In chemistry, linear regression [1] has provided means for
identifying which structural features may be important in
determining chemical activity over a group of reactants
in a poorly understood interaction. This is achieved by
forming a linear relationship between those variables
that describe the structural variation within the group
of reactants and those that describe the activities of the
reactants. The relationship is denoted as a quantitative
structure activity relationship (QSAR). QSAR studies have
therefore formed a close association with combinatorial
chemistry studies in which variations in activities caused
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by the systematic modifications of structures can yield
insight into the reaction activity mechanism.

A particularly interesting example of such a QSAR is
comparative molecular field analysis (CoMFA) [2], in
which reactants with common structural backbones varying
by residue substitutions may be aligned with one another,
and physical characteristics such as electrostatic potential
and steric energies may be measured for each reactant on
a common grid with thousands of points. This is doubly
interesting because it explicitly uses descriptors that
depend only on the 3D character of a molecule rather
than any information on its 1D topology.

CoMFA QSAR regression systems are grossly
underdetermined. However, it should be expected that the
variations at the various field points should be correlated
well enough (because of the relatively small number of
residue substitutions as well as the discrete character
of residue substitution in combinatoric studies) that
a meaningful relationship between those residue
substitutions and the activities may be determined.
Then those grid points around the residue sites that
are important to the determination of the activity
will make large contributions to the regression.

One procedure that treats such a grossly
underdetermined system is the PLS procedure [3], which
was popularized in the CoMFA program of the TRIPOS
SYBYL package.1 The procedure has, since this
popularization, emerged as a standard of analysis in
numerous research publications. The first applications
of CoMFA have also emerged as benchmarks by which
other 3D QSARs are measured [2, 4 –12].

The application of QSARs to spectral data has a
character similar to that of CoMFA. In this case, the
spectra are sampled on a one-dimensional lattice of
wavelengths. The amplitudes become structure variables
for QSAR computations. The application of QSARs to
spectroscopy, including near-infrared spectroscopy, shares
the overdetermined character of CoMFA studies [13] with
a good review by Faber and Kowalski [14].

QSARs have been applied to gene expression analysis
in determining levels of gene expression as a function of
descriptors of pharmacological substrates or treatment
levels [15]. One particular application of regression of
particular interest to gene expression studies in general
involves the exploration of the relationship between
transcriptional and translational control of gene expression
[16]. One future application may be predicting survival
of alleles, such as cancer survival rates [17], or perhaps
of fermentation by yeast alleles [18] as a function
of the levels of expression measured by gene array
chips.

Yet another area of increasing interest is that of
quantitative structure–property relationships (QSPRs).
This is the prediction of physical characteristics such as
boiling points, vapor pressure, critical temperature, critical
micelle concentrations, and polymer– glass transitions
[19]. A possible candidate for application could be the
phenomenological exploration of protein folding times.
Enzyme mechanism is often elucidated by the examination
of mutation activities, just as in combinatoric chemistry
studies. Such studies have also been performed on protein
folding rates [20]. This form of study is very consistent
with standard combinatoric QSAR studies, and represents
an opportunity for exploration by QSAR techniques.

But while PLS is a computationally easy method of
computing regression coefficients for systems with large
numbers of independent variables, the computation of the
coefficients is nonlinear in the dependent variable. This
implies that error propagation may be performed as a
linearized variation, reviewed by Faber and Kowalski [14].
This is frustrating to researchers because the quality of
the predictions becomes more difficult to understand.
Such an understanding should include the following:

● The range of variation in the regression coefficients that
would be consistent with the data.

● The consistency or predictive power of the model with
the data as measured by the ability of the structure
variables to predict the activities.

● The number of components in the independent variables
that actually carry statistical predictive power.

● The contribution of each descriptor to the activity.

One solution to this problem that is also incorporated
into SYBYL is cross-validation [21, 22], in which multiple
regressions are performed on datasets with various data
points excluded from each regression. The variations
between regressions for predicted coefficients yield a
measure of the range of variation that is consistent with
the data, and the quality of the regression is measured
by the predicted vs. expected error squared and summed
(PRESS) of the activities compared to the variance of the
activities. (See Appendix A.) This compares the regression
model to a prediction by constant value. PLS does not
directly determine regression coefficients. Instead, it
determines coefficients for each of a sequence of PLS
components. Each of the subsequent PLS components is
essentially the correlation between the dependent and
independent variables, after the previous component has
been projected out of the data. (See Appendix B.) This
stops when all of the projections are zero, which happens
when, or before, the number of points is reached, or the
number of independent variables is reached (whichever is
smaller). The number of PLS components that produces
the best cross-validation is not usually the one in which

1 Available from TRIPOS Associates Inc., 1699 S. Hanley Rd., St. Louis, MO
63144.
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all of the components are projected out. Instead, the
best cross-validation occurs at some smaller number of
components that represents some measure of the actual
number of independent variables contributing to the
prediction of the data.

PCR procedures [23, 24] emerge naturally from the
quadratic structure of the least-squares problem. The
expression for the sum of the squares of the error between
predicted and expected values may be expressed as a
quadratic form in the regression coefficients. The
principal components are orthogonal combinations of
the data that diagonalize the coefficient quadratic form.
Error propagation in PCR is straightforward and well
understood [23, 24]. Further, a least-squares x 2 statistic
to provide a measure of the goodness of fit based on
a probability model is commonly used [24 –26]. The
probability model in minimum x 2 estimation assumes
that the random deviations of the data from the linear
regression model are Gaussian.

There are two reasons why PCR has not been adapted
for use in CoMFA and other QSAR packages and studies.
Most important is that PCR requires the diagonalization
of a large matrix. If the number of sampled grid points
is in the thousands, the matrix to be diagonalized has
a number of components in the millions.

The second reason is a little more subtle. Cross-
validation techniques have shown that the best
predictivity is not achieved with the inclusion of all of the
components, but is usually achieved with some subset.
PLS provides only one order of extracted components.
However, if there are N independent PCR components,
there are 2N possible subsets that can be constructed from
them. This can be prohibitively large to compute. One of
the major problems in principal component regression is
the selection of an appropriate subset of components.
The solution presented by this paper is finding a set of
components that extremizes the x 2 probability, as is
typical of some other solutions [23].

There is a difference between cross-validation as a
measure of predictivity and x 2 as a measure of goodness
of fit. Goodness of fit measures the consistency of a
regression model with data. Cross-validation predictivity
measures the extent to which a training set provides
information that can predict other unknown data.
Practically, this means that goodness of fit includes all
points in the set for computing the errors, and cross-
validation excludes each point from the prediction
computation. In any large dataset, the effect of including
or excluding any one point should be diluted. However,
the difference can be greatly magnified in any small
QSAR set or grossly underdetermined dataset.

Modeling studies, either by linear regression or by more
flexible techniques, generally fall into one of two non-
exclusive groups: those seeking to understand and measure

the contribution of some particular independent or control
variables to some putative dependent variable, and those
seeking to simply predict the dependent variable as well
as possible given some posited control variables, but not
necessarily very concerned with the structural consistency
of the model itself with the data. Obviously these
considerations are not independent or orthogonal, but
their interests are sufficiently distinct that the preferred
measures of performance tend to be different. Those who
are primarily interested in the consistency of a model with
the data, or who are interested in determining what the
model parameters are, how stable they are, and what their
uncertainties are will be more interested in goodness-of-
fit considerations. Those who are more interested in
prediction will tend to be more interested in predictivity
measures and techniques such as bootstrapping, cross-
validation, jackknifing, and resampling [27]. This
distinction becomes more evident when the researchers
interested in determining the parameters are more than
willing to confront the complications associated with
untangling the impact of correlations between the
independent variables on the regression coefficients,
whereas those interested in prediction may consider
such questions to be unnecessary complications that
do not add to understanding.

This paper was motivated by the growing opportunities
for practice of the application of linear regression,
particularly in grossly overdetermined systems, to
biological problems, which were reviewed earlier in
this section. However, the focus is on those problems
associated with regression that are peculiar to the grossly
overdetermined systems that are emerging in those
biological applications, with an emphasis on the
measurement of regression coefficients and goodness
of fit.

2. Regression model
The regression model is expressed simply as

yi 5 O
j

xij aj 1 ei , (1)

where yi is the ith measurement out of N of the
dependent variable (activity for the ith molecule in the
dataset), xij is the ith measurement of the jth out of D
independent variables ( jth QSAR structure descriptor for
the ith molecule in the dataset), aj is the jth regression
coefficient, and ei is the error in the prediction of the ith
dependent variable by the regression. Many regression
studies use Greek letters to represent estimated regression
parameters, but this usage is not universal [24, 26]. The
expected values of ei are described as

E~ei! 5 0, (2)

E~ei ej! 5 Dy i
2dij . (3)
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If each of the errors ei is Gaussian distributed, the statistic

E
2

5 O
i

e i
2

Dy i
2 5 O

i

1

Dy i
2 S yi 2 O

j

xij ajD 2

(4)

is x 2 distributed with N degrees of freedom [23–26]. This
minimization of E

2 is the foundation of both PLS and
PCR. It may be expressed in terms of matrices as

E
2

5 ~Xa 2 y! TC~Xa 2 y!, (5)

where C is the diagonal matrix with elements
(C) ij 5 d ij /Dyi

2 . This may be expressed alternatively as

E
2

5 ~a 2 a0!
TX TCX~a 2 a0! 1 y TCy 2 a 0

T X TCXa0 , (6)

where

a0 5 lim
e30

~X TCX 1 eI! 21X TCy . (7)

The limit lim
e30(XTCX 1 eI)21XTC 1/ 2 is called a

“generalized inverse” of C1/2X. The limit lim
e30(XTCX 1 eI)21

is undefined unless the matrix first operates on another
matrix or vector which has no projections along
eigenvectors of XTCX that correspond to eigenvalues
equal to zero. However, if u is an eigenvector of XTCX
with a zero eigenvalue (Xu)TC(Xu), it follows that any
projection Xu of X along u will be zero, since XTCXu 5 0
implies that uTXTCXu 5 (Xu)TC(Xu) 5 0. Since C is
diagonal, this implies that each (Xu) i 5 0. Further, this
implies that uTa0 5 0. Note that this solution is not
unique. Any a90 5 a0 1 da, where XTCXda 5 0,
produces an equivalent E

2.
Since E

2 is a x 2 statistic, it follows that a0 and XTCX
are essential statistics. Any changes in a may be accounted
for by the contribution to the error E

2 by the coefficients

E
coef

2
5 ~a 2 a0!

TX TCX~a 2 a0!, (8)

with the remainder accounted for by the residual

E
res

2
5 y TCy 2 a 0

T X TCXa0 , (9)

so that

E
2

5 E
coef

2
1 E

res

2
. (10)

The total number of degrees of freedom in E
2 is N. The

number of degrees of freedom in Ecoef
2 is equal to the

number D0 of eigenvectors with corresponding nonzero
eigenvalues of XTCX. This leaves N 2 D0 degrees of
freedom for Eres

2 . This partition is very reminiscent of
Bayesian treatments of linear regression [28], but the
presentation here follows “frequentist” notions of
sampling theory.

The expectation value of a0 is

E~a0! 5 EH lim
e30

~X TCX 1 eI! 21X TCyJ 5 a, (11)

where a is the fixed parameter characterizing sample
space, to within the previously described ambiguity.
Both PLS and PCR solve the same minimization of
E

2 if all components are employed, and so both obtain
the same value of a0 . The covariance is predicted by

cov~a0, a0! 5 E@~a 2 a0!~a 2 a0!
T# 5 lim

e30

~X TCX 1 eI! 21,

(12)

determined by the inverse of the quadratic coefficients in
Ecoef

2 . As pointed out before, this limit does not exist if
there are eigenvalues of XTCX equal to zero. This means
that any contribution to a of any magnitude in a direction
corresponding to a null eigenvector of XTCX does not
contribute anything to E

2, and implies that the coefficients
essentially have an infinite uncertainty and are completely
undetermined in any underdetermined system. This is just
another reflection of the ambiguity in underdetermined
systems.

A meaningful alternative measure of covariance is the
amount by which the estimate of a will vary given the
variations in y. This is essentially equivalent to the effect
of allowing y to vary according to the variation in e,
implying that

covsubspace~a0, a0! 5 E$a0@e#a0@e# T%

5 lim
e30

E$~X TCX 1 eI!21X TCee TCX~X TCX

1 eI! 21%

5 lim
e30

~X TCX 1 eI!21X TCE~ee T!CX~X TCX

1 eI!21

5 lim
e30

~X TCX 1 eI!21X TCC 21CX~X TCX

1 eI!21,

or

covsubspace~a, a! 5 lim
e30

~X TCX 1 eI! 21X TCX~X TCX 1 eI! 21.

(13)

The limit does exist in this case because (XTCX 1

eI)21XTCX acts like a projection operator that picks out
only those eigenvectors with nonzero eigenvalues. This
expression compares favorably with the variation in the
coefficients observed between the various regressions
produced by cross-validation. Such a result constitutes
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an explicit measure of the stability of the coefficients to
variations in the dependent variables.

It is important to realize that while some consistency
may be expected within a dataset, and it is possible to ask
whether a model is consistent with a dataset in a statistical
sense, underdetermined systems do not yield definitive
measurements of all of the coefficients. Comparison with
other datasets that could ultimately produce a complete
model if the data were combined would not produce
coefficients consistent with one another.

Not only is it possible for a regression to be
underdetermined in the sense of having eigenvalues equal
to zero, but some of the eigenvalues of XTCX may be very
small. Such a system is called “poorly conditioned.” This
corresponds to some var(ai) being very large. Such terms
can add spurious and large contributions to a0 without
significantly affecting E

2, suggesting that it is desirable to
exclude contributions from various subsets of components
that may not correspond to zero-valued eigenvalues. The
systematic consideration of the character of individual
principal components in the analysis of the E

2 quadratic
form is perhaps the best definition for principal
component regression. This includes but is not limited to
issues of conditioning of the regression equations. While
PCR provides a direct way to examine questions such as
the conditioning of a regression, PLS provides no direct
way to consider the issue of whether a regression is poorly
conditioned or not.

Consider a projection operator P that is a projection
onto a subset K of eigenvectors uk of XTCX. As such,
P satisfies

P 5 O
k[K

ukuk
T , (14)

P 2
5 P, (15)

@P, X TCX# 5 0. (16)

Now, it is desirable to partition E
2 in a different way along

projections of Pa:

E
2
@P# 5 ~Pa 2 a0!

TX TCX~Pa 2 a0! 1 y TCy 2 a 0
T X TCXa0 .

Identifying the projection operator Q 5 I 2 P, and noting
that

~Pa 2 a0!
TX TCX~Pa 2 a0! 5 ~Pa 2 Pa0!

TX TCX~Pa 2 Pa0!

1 ~Qa0!
TX TCX~Qa0!,

and that

~a0!
TX TCX~a0! 5 ~Pa0!

TX TCX~Pa0! 1 ~Qa0!
TX TCX~Qa0!,

it follows that

E
2
@P# 5 E

coef

2
@P# 1 E

res

2
@P#, (17)

where

E
coef

2
@P# 5 ~Pa 2 Pa0!

TPX TCXP~Pa 2 Pa0! (18)

and

E
res

2
@P# 5 y TCy 2 a 0

TPX TCXPa0 . (19)

This is a very interesting partition of the degrees of
freedom. The operator P removes degrees of freedom
from Ecoef

2 [P] and essentially transfers them to Eres
2 [P].

Since the total number of degrees of freedom in E
2[P]

remains N, and the number of degrees of freedom in
Ecoef

2 [P] is now DP , the total number of degrees of freedom
in Eres

2 [P] is now N 2 DP . Further, while the number of
degrees of freedom in Eres

2 [P] increases when poorly
conditioned eigenvectors are excluded, so does the total
value of Eres

2 [P]. The relationship between the goodness-of-
fit error and the exclusion of particular components is well
understood [23] and has been considered in comparisons
between PLS and PCR [13, 14].

Partitioning the error according to contributions by
projections of components has an immediate application,
allowing comparison of the goodness of fit for different
subsets of components. In particular, for a subset of
components projected by P, the probability that a x 2

larger than this might be observed is P(xN2DP

2 . Eres
2 [P]).

Those with larger probabilities better represent the fit.
Note that if N 5 DP , which happens when all of the non-
null components are used in an underdetermined system,
P(xN2DP

2 . Eres
2 [P]) is undefined. There is essentially no

statistical information about the quality of the fit if all
of the principal components are included.

Further, the contributions of each individual component
may also be determined. The contribution to Eres

2 [P] may
be determined for any particular component k. For any
component k with eigenvector uk , the projection operator
is Pk 5 ukuk

T . This implies that the effect of any particular
eigenvector is to subtract a variation

E
k

2
5 a 0

Tukuk
TX TCXukuk

Ta0

5 y TCX~X TCX 1 eI!21ukuk
TX TCXukuk

T~X TCX 1 eI!21X TCy

or

E
k

2
5

y TC~Xuk!~Xuk!
TCy

~Xuk!
TC~Xuk!

, (20)

where Ak 5 (Xuk)TC(Xuk) is the eigenvalue of XTCX
corresponding to eigenvector uk . The contribution of the
kth component to cov(a, a) varies as 1/Ak . This is a
reflection of how well conditioned the contribution from
this component is. Small Ak components contain little
discriminating information compared to the uncertainty
they contribute to the regression coefficients. Exclusion
of the smallest Ak contributions therefore improves the
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stability of the coefficients and reduces the size of the
uncertainty in those parameters.

However, the largest Ek
2 contribute the most toward

improving the goodness of fit, since they reduce Eres
2 [P] the

most. Therefore, the value of Ek
2 represents the predictive

power of the kth component. It is possible therefore to
rank the components by predictive power. Consequently,
it is possible to construct a list of subsets with the largest
predictive power, then the next list containing the largest
together with the second largest, and then the third list
containing the top three predictive components, etc. This
reduces the computation from all 2N possible subsets of
components to a simple list of subsets N long. Once this is
done, it is possible to compute P(xN2DP

2 . Eres
2 [P]) for each

of the subsets. This probability generally passes through
some extremum, which represents the optimal subset of
components. Since the questions of the information in a
component as measured by Ak and the contribution the
component makes to the goodness of fit are distinct,
exclusion of low-information components may be
achieved by applying a cutoff to Ak . A selection of
the most important contributors to the goodness
of fit may then be applied.

This approach may be applied to the situation in which
the size of the uncertainty is unknown and it is desired to
estimate some best uncertainty from the regression of the
data. This may be achieved by choosing C 5 I/DY 2 , to
yield

E~E
res

2
@P#! 5 N 2 DP 5

1

DY 2 ~ y Ty 2 a 0
TPX TXPa0!, (21)

and solving for DY 2 . The best subset is the one that
produces the smallest DY 2 . This component-selection
criterion is essentially identical to one proposed by Lott
[29], who also recognized the possibility of reducing the
optimal space of subsets by ranking the components.
However, the connection between the selection of an
optimal subset and a minimum DY 2 was not established,
and connection with x 2 was not explored. Generally, for
overdetermined systems, DY goes through a minimum as
the number of components is decreased. The smallest set
is the best. However, in underdetermined systems there
tends to be no minimum in DY. For a fixed DY, there is
usually some particular subset of components where
P(xN2DP

2 . Eres
2 [P]) is minimized. Once some DY is

selected and the component subset is extracted, the
values of a0 and cov(a, a) that are consistent with
the quality of the regression and the variation in
the data may be computed.

Principal component regression follows the plan of
principal component analysis (PCA): It is assumed that
the solution space is best represented by some subset of
components. But the problem of PCA is to find a subset

of components that represents the data to within some
limit of accuracy. In the case of PCA, the most important
components are those with the largest variance. (See
Appendix C.) The problem with selecting a subset that
spans the space of variation in PCR is that the dependent
variable may depend on some of the components with
smaller variation: If the short axis is discarded, there is no
dimension to describe the layering of its structure. This
problem is well known, and there have been a number
of solutions posed for selecting some optimal subset of
components [23]. However, many commercial packages
still rank components according to their variation Ak 5

(Xuk)TC(Xuk), which measures only the information in the
component, and not the contribution of the component Ek

to the goodness of fit. This has led to some unfounded
criticisms of PCR in various comparisons with PLS. The
use of P(xN2DP

2 . Eres
2 [P]) as the measure of the quality of

fit for component subsets presented here appears to be a
new contribution.

One of the prohibitive costs of PCR computation is the
diagonalization of the large matrix. However, since small
Aks yield poorly conditioned regressions, and zero-valued
Aks correspond to undetermined contributions not spanned
by the dataset, it is appropriate to exclude them, as in PCA.
This implies that a computational algorithm such as
NIPALS [30] may be applied, which is much more
efficient if only the first few components are desired.

3. Conclusions
Partial least-squares analysis and cross-validation have
emerged as standards in analyzing 3D QSARs because of
their simplicity of computation. Together, they provide
methods for assessing

● The range of variation in the regression coefficients
that would be consistent with the data.

● The consistency or predictive power of the model with
the data as measured by the ability of the structure
variables to predict the activities.

● The number of components in the independent variables
that actually carry statistical predictive power.

● The contribution of each descriptor to the activity.

Since PLS and PCR address these issues differently, it
is instructive to compare them. The most significant
difference is that the contributions by the individual
PCR components are immediately available, and the
implications of each one with respect to each of the items
in the above list are computable. PLS components are
much more intermixed; none of the components have
meaning outside of the context of the rest.

First, PLS allows for the examination of the variation
between descriptor coefficients by comparing the cross-
validation regressions. Usually variances and covariances
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in the coefficients are not provided, though estimates
could be computed from the variation in cross-validation
regressions. In PCR, the contribution of each component
to the variances and covariances of the coefficients is
immediately available. In either case, the availability of
this information permits the assignment of error bars to
estimates of activity.

Second, there is a difference between goodness-of-fit
measurements as defined by P(xN2DP

2 . Eres
2 [P]) and the

cross-validation predictivity. On one hand, the predictivity
measures how well the set can predict data that are not
included in the set. This implies that it measures
extrapolative power, while goodness of fit measures the
quality of consistency of the data, or the interpolative
power. In this sense, at least in nondilute or data sparse
sets, predictivity may appear to be more demanding than
goodness of fit. However, the reference variation that is
used in the predictivity measurement is the variance in the
independent variables (activities), while the reference
variation in the goodness of fit is the distribution of
deviations of the model from the actual data. The errors
in the dependent variable should be much more restrictive
than the variation in the independent variable. If the error
bars are larger than the total range of measured variation,
the signal is indistinguishable from noise. Predictivity
requires only that the regression perform better than the
total variation in the dependent variable. Goodness-of-fit
consistency requires that the regression perform better
than the uncertainty in the dependent variable. Usually a
regression that passes a predictivity test does not pass a
consistency test to within experimental error. In most
cases, it is better to estimate the error as an unknown,
attributing some of its magnitude to variables that have
not been accounted for in the regression model. In that
case, the estimated variance is usually much smaller than
the variance of the independent variables.

Third, the use of cross-validation implies that there is
some variation between the regressions. It can be difficult
to identify corresponding PCR components between
separate cross-validation regressions, especially in grossly
underdetermined systems. However, it is generally possible
to identify which of the components of leading importance
maintained their importance from regression to regression,
as well as how much those components vary among
regressions. In PLS, it is very difficult to understand the
relationships among the components, much less how the
decomposition varies among regressions and what that
variation in the decomposition might mean. This exposes
at least one problem with cross-validation; the regression
to some extent compares unrelated components in
choosing which models with which components most
closely represent the data. The reason is that the least-
squares solutions obtained by minimizing E

2 are not
optimizations of predictivity measured by PRESS, since

predictivity is based on points not included in the
regression and thus not included in E

2. At least one
implication of this fact is that it is difficult to assess the
impact of excluded data on the regression coefficients
analytically. The decomposition of PLS selects those parts
of the independent variation that correlate most strongly
with the dependent variations at each step. Usually the
number of PLS components appears to be less than the
number of PCR components. However, those components
are distinct in their character and should not be compared
directly with one another. Usually regressions requiring
more PLS components than other regressions also require
more PCR components than the others.

Fourth, the relative contribution of each of the
descriptors to the variance of the dependent variable is
presented in SYBYL as uai u=var( xi)/var( y). However,
this does not take into account the effects of correlation
among the descriptors within the sampled set. Further,
this computation is also available within the context
of PCR, and PCR allows for the identification of the
importance of individual components to each regression
by examining the projections Xuk for each principal
component k, taken together with the predictive power
of the component, as well as the relative contributions
(amplitudes) of the descriptors to the components in uk .

Perhaps most important, it is possible to recognize when
extrapolation data points contain information outside
the subspace spanned by the data. For example, if uk

corresponds to a zero eigenvalue, xTuk is a measure
of the projection of that extrapolation candidate into
uncharacterized space, where the contribution to the
activity will be undefined. This information is not as
directly available in PLS, even though it is possible to
examine the residual in the independent variables after
decomposition by the training set has been performed.

More, if uk corresponds to a poorly conditioned
component, xTuk measures the projection into badly
characterized space, whose contribution to the activity is
poorly defined. This information is not available in PLS,
and care must be exercised to recognize when spurious
results follow from data that are poorly conditioned. A
good example of this would be the inclusion of several
descriptors which are constrained to sum to zero. PLS may
recognize the round-off error as a part of the regression,
yielding large coefficients for those descriptors.

One argument against PCR is that the components are
an artifact of the space that happens to be sampled by the
dataset. For example, the components themselves depend
on how the independent variables were scaled, and the
quality and predictive power of the components can be
changed merely by changing the units of measurement.
This shows up particularly in that measurement unit
changes can change the activity predictions in using some
number K of components. It is particularly true in the case
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of underdetermined systems, in which strong correlations
between the descriptors may be induced simply by the
small sample size compared to the number of descriptors.
Such pathology happens to be true of PLS as well, but
PLS hides its appearance in its decompositions more
effectively. The technique most often adapted by both
PCR and PLS is to rescale the descriptors by the root
of the variance of that descriptor within the dataset;
this tends to give a more balanced variation between
descriptors.

Ultimately PCR and PLS are founded on the
minimization of a sum-of-squares error expression. This
paper has explored some of the analytic consequences of
least-squares solutions as they apply to PLS and PCR, and
has considered how they address those issues of error
analysis that have emerged as being very important to
QSAR studies.

Appendix A: Cross-validation
Since the number of degrees of freedom associated with
individual PLS components is not known, the construction
of a x 2 error associated with a truncated set of
components is not meaningful. One way around that
is to ask how well the individual, and it is assumed
independent, points are predicted by a fit to all of the
other points. This leads to the idea of cross-checking the
fits of all of the data points via a method called “cross-
validation.” Further, it is desirable to try to determine
which components, or how many, are necessary to predict
the data. By applying cross-validation to predictions
using varying numbers of components, it is possible to
determine the number of components that produces the
best predictive capability. This approach partly motivated
the development, presented in this paper, of a PCR
component subset selection based on x 2 contributions
that measured the probability that a linear model could
describe a set of data consistent with errors of
measurement.

Cross-validation is a technique that may be applied
either to PLS or to PCR. The method cycles through the
set of points, excluding one point from the computation of
the fit parameters, and then constructing an error for the
fit vs. actual excluded point. A sum-of-squares error is
constructed for this and is used in an F-test to compare
against the variance about the mean. If this were applied
to PCR, it is not clear how many degrees of freedom
should be assigned to the number of independent
components that were kept for the fit, since each
component varies from point to point for each of the
predicted points that was excluded from the computation
for that fit. For PLS, where each retained component does
not contribute a x 2 degree of freedom in the first place,
it is even more unclear how many degrees of freedom to
assign to each retained component. However, common

practice seems to be to assign one degree of freedom per
component.

The statistics that apply follow. The predicted sum of
squares PRESS is defined as

PRESS 5 O
i

@ yi 2 n ŷi#
2,

where n ŷi is the predicted value of y for the ith point using
n PLS components. A q 2 that is much like a correlation
coefficient compares the ratio of PRESS to the variance

q 2
5 1 2

PRESS/N

s y
2 ,

where N is the number of points. The F statistic is
constructed from

FN,N 5 1 2 q 2
5

PRESS/N

s y
2 .

The numerator is essentially the variance from prediction;
the denominator is the no-prediction (all values predicted
by the mean of the independent variables) variance. If the
denominator is a variance estimated about a sample mean,
the numerator has a number of degrees of freedom
associated with the number of data points N, but the
denominator has the degrees of freedom associated with
the same number of data points, but estimated about the
mean N 2 1. The actual F statistic should then be

FN,N21 5
PRESS/N

s 2 ,

where the s 2 has an N 2 1 in it.
The literature frequently cites q 2 without interpretation

in terms of F scores or probability estimates, thus avoiding
the question of whether the number of degrees of freedom
are defined. Assuming they are defined, the critical value
for q 2 given the degrees of freedom has the form

q 2
5 1 2 F.

At the 95% level, if N 5 2, the value of F is F 5

0.054017 for a q 2 5 0.9459. For N 5 6, F 5 0.227927
for a q 2 5 0.7731. For N 5 10, F 5 0.331084 for
a q 2 5 0.6689. For N 5 100, F 5 0.718046 for a
q 2 5 0.2819. Depending on the number of data points,
the range over which a critical q 2 can vary is significant.
Frequently a q 2 is cited in the literature with no sense
of whether it reflects a statistically significant level.

Appendix B: Partial least squares
The approach taken here is to iteratively extract
components each one of which satisfies the form of the
least-squares equation. Each of the components is linearly
independent of the previous ones, until no more
components can be constructed [3].
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In this case, just as in the PCR case, the coefficients a
in a vector of length D in an expression of the form

x Ta 5 yp ,

for a particular vector x composed of D descriptors and
a scalar yp , are determined by minimizing a x 2 error,

E
2

5 O
i51

N

wi~ x i
Ta 2 yi!

2
5 ~Xa 2 y! TC~Xa 2 y!,

where wi 5 1/Dyi
2 , C is diagonal with (C) ii 5 wi , y is

now a vector N long, and X is an N 3 D matrix. The
minimization of E

2 with respect to a yields

c ; X TCXa 5 X TCy

for a vector c of D components. This equation is to be
solved for a. One problem is that the matrix multiplying
a may be singular. If the goal is to extract the most
important factor leading to y, something related to the
correlation of the y with X should be examined. This
might most simply be done by taking the projection
along c, which is just that correlation. Then

ici 5 ĉ Tc 5 ĉ TX TCy 5 ĉ TX TCXa.

Defining u 5 Xĉ, ui 5 xi
T ĉ, and identifying

b ;
u TCX

u TCu
,

it follows that

bĉ 5 1

and

ba 5
u TCy

u TCu
.

If the preceding describes how the structure components
line up with the response or activity data, that information
may be used to extract the projection of this dominant
leading component. A transformation is sought that
subtracts displacements D from X such that X9 5 X 2 D
are perpendicular to ĉ. At the same time, there should
be a dy which, when subtracted from y, leads to the
corresponding y9 5 y 2 dy. The connection between X
and y is through a in y 5 Xa, which is to be preserved in
the projected components y9 5 X9a with the same a. This
implies that the transformation will involve a dy 5 Da.
The only vector we have constructed that has a well-
defined scalar product relationship with a is b. Therefore,
we want to construct D such that Dĉ acts like a projection
with bĉ. This may be done by seeking f such that D 5 fb
and

X9 5 X 2 fb,

where

X9ĉ 5 0.

This is satisfied when

X9ĉ 5 Xĉ 2 fbĉ 5 u 2 f 5 0,

so

f 5 u

and

X9 5 X 2 ub.

Forming the inner product of this with a yields

X9a 5 Xa 2 uba.

Recognizing that y9 5 X9a, y 5 Xa, and
ba 5 uTCy/uTCu, this simplifies to

y9 5 y 2 u
u TCy

u TCu
.

Once the projected X and y have been obtained, these
may be used to compute new c and b, and new projections
obtained until c 5 0. Since each new c is constructed
from linear combinations perpendicular to all previous c,
each c is perpendicular to all previous c. If fewer data
points than components are present, the termination
condition is met in a number of iterations smaller than
the number of components. The order of subtraction
proceeds from largest to smallest correlation with the y.

There is no explicit computation of a as so far defined.
Instead, predictions are obtained by decomposing an
unknown x by the set of c and b that were determined by
the iterative application of the above projections on the
training set. Each iteration folds the data back on itself
nonlinearly. In order to predict a particular yp for some x,
a reverse application of the above projections must be
applied. For each iteration, x must be decomposed using

x9 5 x 2 vb T,

where v 5 xTĉ. The remaining x, after the complete
decomposition, is a measure of the information in x that
was not accounted for by the original dataset that was
used to construct the least-squares decomposition.
Starting with yp 5 0, the new y must be composed,

yp 5 y9p 1 v
u TCy

u TCu
,

for the b and c corresponding to the step of
decomposition that was determined from the previous
decomposition of the data.

Now, if

y 5 m1 x1 1 m2 x2 1 m3 x3 1 · · · ,
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it follows that x 5 (1, 0, 0, . . . ) will yield y 5 m1 ,
x 5 (0, 1, 0, . . . ) will yield y 5 m2 , . . . , etc.

The relationship between the error E
2 between steps

extracting components may be extracted as follows. First,

E
2

5 ~Xa 2 y! TC~Xa 2 y!

5 SX9a 2 uba 2 y9 1 u
u TCy

u TCuD
T

z CSX9a 2 uba 2 y9 1 u
u TCy

u TCuD
5 SX9a 2 u

u TCy

u TCu
2 y9 1 u

u TCy

u TCuD
T

z CSX9a 2 u
u TCy

u TCu
2 y9 1 u

u TCy

u TCuD
5 ~X9a 2 y9! TC~X9a 2 y9!.

Therefore, the extraction of each component leaves the
error unchanged. The error for a PLS regression is
determined entirely by the residual for the last extracted
component in the subset of components. This is entirely
different in character from the notion in PCR that each
component contributes a predictive capability that can
be measured by its “predictive power” (see Section 2).

This method has some advantages. First, it produces
leading contributing structure components that predict
the strongest correlations with the activities in order.
There is no need to compute any more than is desired.

However, there are a number of disadvantages. First,
there is no really overt computation for a. Instead, PLS
provides a decomposition technique. The dependence of
the error E

2 on a is never explicitly determined. Further,
even the contributions of each individual component of E

2

depend on the entire subset that was applied. The method
is nonlinear in the activities, which makes a propagation
of errors very difficult. Since the components are not
orthogonal in quadratic contributions to the x 2 statistic E

2,
it is impossible to determine the number of degrees of
freedom that have been involved if some components are
dropped, and therefore there is no internal goodness-of-fit
statistic. Instead, a “cross-validation” technique [21, 22]
is usually employed to try to extract this information.
Further, the components must be picked off in order. It is
impossible to measure the individual contributions of each
component outside the decomposition sequence, so an
independent articulation of the contribution of each
component, as with eigenvectors, is impossible.

In conclusion, there is no direct estimation of a. The
nonlinearity in y makes a propagation of errors difficult,
and a direct way to compute cov(ai , aj) is unavailable.
Since the components are not orthogonal in quadratic

contributions to the x 2 statistic E
2, it is impossible to

determine the number of degrees of freedom contributed
by the components; therefore, there is no internal estimate
of goodness-of-fit statistic. To paraphrase, while one can
determine the simplest elements of the fit, it is not readily
clear how much is known, how well it is known, or even
whether something new is not known from previous
experience.

Appendix C: Principal component analysis
The notion behind principal component analysis [23] is
that data may be approximated most effectively by the
leading principal components of the covariance matrix.
This may be understood as follows. Consider a set of N
vectors xW i , which is represented in terms of variations
about the mean

xWi 5 jWi 1 XW ,

so that (1/N) ¥ i xW i 5 XW ; and whose variation about said
mean is expressed in terms of the eigenvectors of the
matrix C 5 (1/N) ¥ i jW ij

W
i
T . These may be written

Cv̂k 5 s k
2v̂k .

Then, since the v̂k span the space, the jW i may be expressed
in terms of the v̂k as

jWi 5 O
k

cikv̂k .

Since C is symmetric with real coefficients, the v̂k are
orthogonal. It follows that

cik 5 v̂ k
T jWi

and that (1/N) ¥ i cik
2 5 (1/N) ¥ i v̂k

TjW ij
W

i
T v̂k 5 v̂k

TCv̂k 5 sk
2 .

If sk 5 0, it follows that cik 5 0. Thus, the cik may be
expressed as proportional to sk , or cik 5 uiksk , so that

uik 5
1

sk

v̂ k
T jWi ~where sk Þ 0!

and

jWi 5 O
k,skÞ0

skuikv̂k .

Then (1/N) ¥ i uik
2 5 1. Next, the question is how much

each of the components contributes to the representation
of the data. In particular, if some subset S of the
components is used, and its complement S9 is excluded,
how good is the approximation? We define an error
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E
2
~S! 5

1

N O
i

uO
k[S

skuikv̂k 2 jWiu
2

5
1

N O
i

uO
k[S9

skuikv̂ku
2

5
1

N O
i

O
k,k9[S9

sk9
skuik9

uikv̂ k9

T v̂k

5
1

N O
i

O
k[S9

s k
2uik

2

5 O
k[S9

s k
2 .

The error is then equal to the sum of the eigenvalues
of the covariance matrix that were excluded from the
approximation. If these are the smallest eigenvalues,
the approximation shows a minimum error.
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